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Stationary Regenerative Sets

and Subordinators

by

P. J. Fitzsimmons

and

Michael Taksar

Abstract

In this paper we give a simple construction of the general

stationary regenerative set, based on the stationary version of

the associated subordinator (increasing Levy process). We show

that, in a certain sense, the closed range of such a Levy process

is a stationary regenerative subset of R. The distribution of

this regenerative set is a-finite in general; it is finite iff the

increments of the Levy process have finite expectation.

1980 AMS Subject Classification: 60D05 (primary) 60J25, 60J30.
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1. Introduction

A regenerative set is a random subset of R with the

property that any stopping time in the set splits the set into two

independent pieces, the right hand piece (as viewed from the

stopping time) having a distribution independent of the particular

stopping time. Such sets arise naturally as the set of times when

a strong Markov process visits a particular point in its state

space. For background on regenerative sets the reader can consult
.[2], [5], (6], [8], [9], (10], (11], [13], [14].

It is known ([8], [10], [11]) that any regenerative subset of

[0,+*[, defined on a probability space, can be realized as the

closed range of an appropriate subordinator (an increasing process

with stationary independent increments). This correspondence was

extended to the case of stationary subsets of R by Taksar [13],

and later by Maisonneuve [10]. Both of these authors confine

themselves to the case where the underlying measure space is a

probability space. This amounts to restricting attention to those

regenerative sets whose associated subordinators have increments

with finite expectation.

-. In recent years a theory of stationary Markov processes on

a-finite (typically infinite) underlying measure spaces has been

developed. The fundamental paper in this regard is Kuznetsov [7].

See also [3]. With this theory in hand we can deal with the most'p

general stationary regenerative set. We consider a stationary

subordinator Y and its closed range M. Unfortunately the
distribution of M is never a-finite. But if T is an

appropriate random time (say a passage time of Y), then the pair

-3-



(T,M) has a o-finite law which factors as the product of Lebesgue

measure and a second measure P. The measure P is the

(a-finite) distribution of a regenerative set which is naturally

associated with Y.

In the next section we set our notation and recall some basic

facts about subordinators and regenerative sets. In section 3 we

consider the range of a stationary subordinator, as discussed

above. In a final section we use the result of section 3 to give

a simple proof of the fact that if M is a stationary

regenerative set, then -M has the same distribution as M.
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2. Regenerative Sets and Subordinators

Our notation and the basic definition (2.1) are inspired by

[10] and [2]. The definition of rt below is slightly different

from that of [101 and [2]; this change was suggested to us by

Bernard Maisonneuve (private communication). See the note at the

end of [2].

Let a denote the class of closed subsets of R. For
0 :

teIR, w GE define

- 00

dtlw ) = inf(s > t: s e w}; rt(w) = dt(w) -t;

rt (w ) = ce(s - t: s E w n]t,+[} = ct((w - t)n]0,+*o[).
t

0

Here ce denotes closure and inf = + . Set i = o(r :s),

lo = 0(r: s< t}. Clearly (dt: t 6 R) is an increasing cadlag

process adapted to ('It: t e R),, and dt I t for all

t 6 R

A random set is a measurable mapping M from a measurable
0 0

space (R,F) into (2 ,' ). Associated to a random set M are

several processes: D t = dt-M, Rt = rtM, Mt = rt OM.

Let (a,YP) be a a-finite measure space and let

(r : t e R) be a right continuous filtration in (R,Y). Let M

be a random set defined on (2,Y).

(2.1) Definition. M = (a,7,Yt,M,P) is a regenerative set

provided-,_.

i) (Dt) is adapted to (t

-5-
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ii) P(D t = + 0) = 0, Vt e R;

iii) Rt(P) E P(Rt e -) is a a-finite measure on [0,+-[

for each t e R;

iv) there is a probability measure P on (f ,1 ) such

that for all t e R,

(2.2) P(f(M D H = P (f), Vf E (N )

t

0
In this case P is called the regeneration law of M.

(2.3) Remarks. a) Hypothesis (2.1 ii) means that M is unbounded

* on the right, a.e. P. This hypothesis is made to simplify the

'exposition and could be dispensed with.

b) Since a(Rt) c rt' (2.1 iii) implies that P restricted

to Ft is a o-finite measure. Thus the conditional expectation

required in (2.1 iv) is well defined.
0 0

Let M denote the identity map on a It is easy to check

that ( 1 ,'t+'M P is a regenerative set (with regeneration

law P ). In addition P satisfies

(2.4) P (0 E M C[O,+ [) = 1.

It is well known that any such regeneration law P arises as the

distribution of the closed range of some subordinator (see (8, 10,

'a 11]). That is, on some probability space there is defined a

subordinator X = (Xt:t > 0) (an increasing, right continuous

R-valued process with stationary independent increments) such that

the distribution of the random set ce(X t - X 0:t > 0) is precisely



P .Note that because of (2.1 ii), P (M is unbounded) = 1; it

follows that X t T +- as t T +-, almost surely. Let P denote

the law of X under the condition X0 = x (x e R). Clearly Px is

the same as the law of (Xt + x:t > 0) under F O . Because X

4 has stationary independent increments, the laws P x (and so also

the regeneration law P ) are completely determined by

-ctXt -up(-aXttl>0

(2.5) PX (e t)= e -"F'(e t) = exp(-ax - tg(a)), a > 0,

where the Levy exponent g is given by

-40

r -ax)
* (2.6) g(a) = Aa + (1 - e )I(dx).

0

Here A > 0 is the drift of X, and 9, the Levy measure of X,

is a measure on ]0,+-[ such that the right side of (2.6) is

finite for all a > 0. Let U(x,A) denote the potential kernel

for X; namely

00

(2.7) U(x,A) = px(f 1A(Xt)dt).

0

Write U(A) for U(0,A); by spatial invariance U(x,A) = U(A-x).

Using (2.5) we have

00

(2.8) e -ay U(dy) = 1/g(a), a > 0.

0

I -7-



Now define a measure nr on [0,+-[ by

(2.9) ff(A) = A 0 (A) + I (]x,+w[)dx, A G " 0+ ["

A

0 -ax

One checks that j e i(dx) = g(a)/a. If follows from (2.8) that

0

(2.10) e -ax (dx).f e-aYU(dy) = 1/a, a > 0.

0 0

Inverting Laplace transforms in (2.10) we arrive at

(2.11) U(A) f 1(dx)U(x,A) m(A n ]0,+-[),

• " [0,1+_(

where m denotes Lebesgue measure on R. Clearly n is a

a-finite measure. It is known (see e.g. [10]) that n is an

invariant measure for the "residual life" process (rt:t > 0)
0

which under P is a strong Markov process. This fact is also an

easy consequence of the construction of the next section; see (3.5

iii). Note that by (2.10) we have

r0.

'[0+o[ = A + xfl(dx).

0

On the other hand, by (2.5) and (2.6),

._,

-8-
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'N

I

P0 (Xt)/t = A + f xlT(dx).

0

0
Thus 7r[0,+~o( < 00 jff IP (Xt) < 00 for all t > 0.
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3. Stationary Subordinators and Regenerative Sets

ie1s

We shall say that a regenerative set M is stationary

provided M - t ={s-t: s E M) has the same law as M, for each

t 4E R. More formally, M is stationary if its distribution (a

0 0
measure on (2 ,i )) is invariant under the family of

0 0 0 0

f. transformations t:w -# w -t, t E R, W 6 a

rIn view of the relationship noted in the last section between

subordinators and regenerative subsets of [0,+-o[, one might

S.,k think that each stationary regenerative set could be obtained as

the closed range of the appropriate stationary subordinator.

Unfortunately the distribution of the range of a stationary

subordinator is never a a-finite measure: if it gives an event

positive measure, then that event has infinite measure. This

problem can be sidestepped by means of a trick; the complete story

is contained in Theorem (3.5) below.

To begin, let P be the regeneration law of some

regenerative set as in Definition (2.1). Let

X =(X :t > O;P :x e R) be the associated subordinator with Levy

% exponent g as in (2.6). Thus P is the law (on (a , )) of

ct{Xt - Xo:t > 0) under any of the laws .

Note that the Lebesgue measure m on R is an invariant

L measure for X. The proposition to follow is therefore a special

- case of a theorem of Kuznetsov (7]. See also [3] for related

matters. Let W denote the space of paths w:R -# R which are

increasing and right continuous. Let Yt(w) = w(t),

I C{Y :s C R) 4t = {Ys:s < t).

04 -lo-

.. .
"
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(3.1) Proposition There is a unique a-finite measure Q on

(W,I) under which Y = (Yt: t E R) is a strong Markov process

with one dimensional distributions all Lebesgue measure m, and

with the same transition function as X. More precisely,

i) Q(Y e A) = m(A), t E R, A 4 2;
tyii) Qf(Y YT +

ii) O(f(YT+s) 4T+ ) = V (f(X s)), s > O, f 

whenever T: W _# R U (+ ,-oo) is a stopping time of the filtration

( t:t E R).

(3.2) Remarks a) It is implicit in (3.1 ii) that Q restricted

to 1 T+ {T&R is a-finite.

b) Q is stationary in the sense that a (Q) = Q, Vt - R,

where (a w)(s) = w(t+s). Also, it is clear from (3.1 i) and
t

"- .(2.5) that Q is invariant under the spatial translations x

defined by ( xw)(t) = w(t) - x.

Let M = M(w) = ct(Yt(w): t e R) denote the closed range of

., Y. Clearly M is a random set on (W,I). We leave it to the

reader to check that, a.e. Q,

(3.3) lim Yt =-lim Yt

-" Thus M is almost surely unbounded on both sides. Note that

M(xw) = 9x(M(w)), where 9 w = w - x as before.xx

Let us say that a 1-measurable random time T:W - R U {+4,-o)

is an intrinsic time if Q(T 4 R) = 0 and if

t + T(a tw) = T(w), Vt E R, Vw e W.

S-11-



.4.' For example, the passage times L defined by

-: '.

(3.4) Ls = inf(t e R:Y t > s}

. are intrinsic times. Note that L l+xw) = L (w).

0 0

(3.5) Theorem. There is a unique a-finite measure P on (i ,)

such that

(3.6) Q(f(T,M)) (m a P)(f), f e (2 a '1 )+,

for any intrinsic time T. Moreover

0 0 0 0

i) (a , S ,'t+,M ,P) is a regenerative set with regeneration

law P;

ii) P is stationary; i.e., 0r(P) = P, Vt E R.

iii) P(rt e A) = n(A), t 6 R, A E [0+.*[' where n is

defined by (2.9).

From (3.6) we see that Q(M e A) = (+-o).P(A) for any

A e1, justifying the remark in the second paragraph of this

section.

The proof of (3.5) requires two lemmas. The first of these

is a special case of a "switching identity" of Neveu [12]. We

give a short proof for completeness.
-.. 

(3.7) Lemma. Let S and T be intrinsic times, and let A e 4

be (ot)-invariant. Let ? and F be positive Borel functions

on R with 0 < m(V) = m(?) < o. Then

[2 -12-



Q(,P(S)A) = Q(I'(T)A).

Proof. We use Fubini to compute:

m~r)(P()A)= Q(UIS)J f (T+u)du.A)

- - Q(T(S-u)V(T)A)du
P

M m(P)Q (,P(T) A) .

We have used the fact that o (Q) =Q for all uER. 0

(3.8) Lemma. For any S e R,

(3.9) Q(f(L y L -s)) =(Me n)(f), f G (Me

Proof. Since (L ,Y -y s)) =(Lop Y L 0)Ots and since ts(Q) Q,

it suffices to consider the case s = 0. The reader can check

that Q(LQ 0) = 0 = Q(Y0 = 0). Thus, since Y is increasing,

-ppQ(g(Y 0 );L 0 < 0) = Q(g(Y0 );L 0  0)

=' Q(g(Y0 );Y 0 > 0)~

-13-



40.

" m(gl] 0,+ [),

by (3.1 i). But m(g 10 +-[) = nU(g) by (2.11). By (2.4) and

(5.3) of [3] formula (3.8) follows in case s = 0.

Proof of Theorem (3.5).

1. Let QT denote the measure on R x a defined by the left

side of (3.6). •QT is a countable sum of finite measures, since

0 0

Q is a-finite. If f t(s,w ) f(t-s,w ), then since Mo t = M

', Q T(f ) = Q(f(T-t,M))
Ttt

= Q(f(TOot,Moo)

t t

= Q(f(T,M)) = T(f).

Thus, QT is translation invariant in its first coordinate. By a

result of Getoor [4], there is a unique measure PT (a countable

sum of finite measures) such that QT = m 0 . Since MOot =M,

it follows from Lemma (3.7) that PT does not depend on the

particular intrinsic time T. Thus, setting P = PT for any such

T, we have QT = m ® P, which is (3.6).

0 0 0 0

2. Recall that e tw = w - t for w e . Since

Mot =GtS, Ls+ t =Ls°t, and tt(Q) = Q, we have

'•. "4

. st(P)(F) = Q(FOMO4t; 0 < LO _ 1)

-14-



= Q(FOMOt; 0 < Lt t 1)

= Q(FOM; 0 < L_ t 1)

',A'= P(F),

where the first and last equalities follow from (3.6). Thus, P

Nis stationary (i.e. (3.5 ii) holds).

3. Point iii) of (3.5) is an immediate consequence of (3.6) and

Lemma (3.8), since X = R0 = roOM. In particular, Rt(P) isL 0

a-finite for any t e R.

0 0 0 0

4. To verify that (1 ,1 ,4t+,M ,P) satisfies Definition (2.1)

it only remains to check (2.2). Because =t(P) P it suffices

0
to consider the case t = 0. Given F e 10+ note that

FOM Also, M D ce(Y -YL :t > LO}. Since L is a
L0 +*D0L0 0 0

stopping time of (4t+), the distribution of MD conditional on

1 Lo+ is the same as the F distribution of c1(Xt: t > 0) (by the
0

strong Markov property (3.1 ii)). Since P is the 0

distribution of ct(Xt:t > 0), (2.2) holds as required.

4. An Application

As an application of the construction of the last section we

A~t. d
shall give a short proof of the distributional equality M M,

whenever M is a stationary regenerative set.

.1
" - - 15-



Thus, let M be a stationary regenerative set with

0

regeneration law P Let P be the distribution of M on

0 0

( i , ). We claim that, up to a constant multiple, P must be

identical with the particular stationary regenerative set

"" constructed in the last section, starting from P Indeed, the

residual life process (rt), which under P is a strong Markov

process, is easily seen to be a finely recurrent process with a

single recurrence class. By [1], the process (rt) has a

a-finite invariant measure which is unique up to a constant

multiple. But each of the laws n = 0 (P) and r = ro(P) is a

a-finite invariant measure for (rt). Thus n and n are

multiples of one another. It follows that P and P are
0'

multiples, as claimed.

(4.1) Theorem. Let (QFYt,M,P) be a stationary regenerative

set. Then for any A e I., P(M e A) = P(-M e A). That is, M dJ

M.

Proof. By the discussion preceding the theorem, we may work with
] 0 0 0 0

the canonical realization (2 ,I ,t +,M , P). Moreover we can
44+

assume that P arises via Theorem (3.5). Thus let (Yt be the
44'p

stationary subordinator, and M the closed range of Y, as in

(3.5). Consider the process Yt = -Y (-t)- t E R. Clearly Y is

increasing and right continuous. We leave it to the reader to

check that ) under Q has the same distribution as (Yt)

under Q. Note that the closed range M of Y is just -M.

Moreover, L= inf(t:Yt > 0) is an intrinsic time (of Y). Thus

P(A) = Q(O < L 1 1, ME A)

-16-



= Q(O < Lo 0  , M e A)

= Q(O < L 0 1, -M e A)

...-. = p(5i) ,

where A = (w :-w E A). The identity P(A) = P(A), VA e 4 is a

formal version of the statement of the theorem, so we are done. 0

• 17
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